If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(10x)^2-9=0
a = 10; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·10·(-9)
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{10}}{2*10}=\frac{0-6\sqrt{10}}{20} =-\frac{6\sqrt{10}}{20} =-\frac{3\sqrt{10}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{10}}{2*10}=\frac{0+6\sqrt{10}}{20} =\frac{6\sqrt{10}}{20} =\frac{3\sqrt{10}}{10} $
| 4/6x=16 | | n3n=14-4n | | 22-6x=x-16 | | 8a-2=4a+6 | | x^2-30x=8800 | | (2)/(x-2)=((3)/(x+5)+(10)/(x^2+3x-10)) | | 8x+1=−x−1 | | 63x-7=0 | | (x-1/7)^2=3(7x-1) | | 7x−13=-6 | | 18x^2-9x-13=0 | | 8y+7=y+7 | | (15x-2)+(7x+4)=0 | | 235000=x+15000+(x+15000)+25000+x | | 4-3y(y-4/y)=41-y^2 | | 5=9a-4 | | 5x^2-28x+23=0 | | 3x–5+23x–9=0 | | 3b-2b(1+3)=15 | | 6x+8=20x-8 | | (x-4)^2-(7)=0 | | 1/3x(12-x)=38 | | (x-4)^2=7 | | 8x^2-92x-156=0 | | v^2-12v+21=1 | | 1/3x+(12-x)=39 | | 8/x=15/225 | | 4x^2+32x=- | | 4*(x-2)^2=25 | | 2x(x+4)=x+4 | | 8k^2-16k-10=0 | | 4*(x-2)=25 |